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Abstract

The 2020 Violence Early Warning System (ViEWS) Prediction Competition chal-

lenged participants to produce predictive models of violent political conflict at high

spatial and temporal resolutions. This paper presents a convolutional long short-term

memory (ConvLSTM) recurrent neural network capable of forecasting the log change

in battle-related deaths resulting from state-based armed conflict at the PRIO-GRID

cell-month level. The ConvLSTM outperforms the benchmark model provided by the

ViEWS team and performs comparably to the best models submitted to the compe-

tition. In addition to providing a technical description of the ConvLSTM, I evaluate

the model’s out-of-sample performance and interrogate a selection of interesting model

forecasts. I find that the model relies heavily on lagged levels of battle-related fatalities

to forecast future decreases in violence. The model struggles to forecast escalations in

violence and tends to underpredict the magnitude of escalation while overpredicting

the spatial spread of escalation.

Keywords— Political conflict; forecasting; neural networks; machine learning

1 Introduction

The increasing availability of high-quality and high-resolution data about political violence

has, in recent years, spurred interest in the use of machine learning to forecast conflict events.

New datasets offer the finest-grained global-scale views into conflict events ever collected

and made publicly available; these include the Armed Conflict Location and Event Dataset,

the Integrated Conflict Early Warning System (ICEWS), Phoenix, and the many datasets

produced by the Peace Research Institute Oslo (Raleigh et al., 2010; O’Brien, 2010; Althaus

et al., 2020). The proliferation of these data has coincided with increased interest in conflict

forecasting (D’Orazio and Yonamine, 2015; Hegre et al., 2017; Chiba and Gleditsch, 2017;

Blair and Sambanis, 2020; Mueller and Rauh, 2020). The Violence Early Warning System,

ViEWS, is one such project that endeavors to produce monthly forecasts of violence at the
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state and sub-state levels (Hegre et al., 2019). In 2020, the ViEWS team hosted its first

ViEWS Prediction Competition, a shared task that solicited models capable of predicting

changes in the severity of violent state-based conflict in monthly increments up to seven

months in advance (Vesco et al., 2022a).

This paper describes one such model: a convolutional long short-term memory (Con-

vLSTM) recurrent neural network solution to the sub-state challenge of the 2020 ViEWS

Prediction Competition. The sub-state challenge asks competitors to predict the change in

logged levels of state-based violence at the PRIO-GRID cell-month level (Tollefsen, Strand,

and Buhaug, 2012). The ConvLSTM model outperforms the ViEWS team’s benchmark

model in out-of-sample evaluations and performs among the best of all contestants’ entries.

I proceed by first motivating and detailing the chosen modeling strategy. Next, I describe

the model’s performance on the various forecasting tasks. Then, I examine selected out-of-

sample forecasts. Finally, the paper concludes with recommendations for future research on

conflict forecasting.

2 Modeling Strategy

The PRIO-GRID cell-months, sometimes referred to as pgm, are each one-half degree longi-

tude by one-half degree latitude. The competition requested predictions be made for every

cell for 2, 3, 4, 5, 6, and 7 months in the future; these steps are indexed by s ∈ {2, . . . , 7}.1

The value of the target variable is ln(ged best sbs +1)− ln(ged best sbt=0 +1) where t = 0

denotes the time step from which forecasts are to be made. PRIO defines ged best sb as

the best estimate of monthly battle deaths in state-based conflicts. For convenience, I use

∆s ln(fatalities) as shorthand for the target values.

Previous literature on political conflict forecasting has highlighted the importance of

temporal and spatial dependencies (Weidmann and Ward, 2010; Montgomery, Ward, and

Hollenbach, 2011; Metternich, Minhas, and Ward, 2017). However, much of this work has

1I also make predictions for s = 1 and therefore sometimes refer to seven time steps.
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relied on traditional regression modeling and, therefore, temporal and spatial lags were

precomputed and entered into the model alongside other non-lagged covariates. I instead

use a neural network that parameterizes the spatial and temporal lag structure; these lags

are learned by the model on a per-feature basis. This strategy allows the model to forecast

conflict based on nonlinear combinations of both spatially- and temporally-lagged predictors.

2.1 Motivation

Inspiration for the chosen modeling solution is drawn by analogy from the conflict domain

to the problem of next frame prediction in video processing (Lotter, Kreiman, and Cox,

2017). Representation of change over time and space in logged battle deaths is similar to

that of video: one time axis, two spatial axes, and a features axis.2 Framing the problem

this way, the ViEWS Prediction Competition asks entrants, given a time-ordered series of

images of Africa, to predict the subsequent seven “frames,” or maps. In the video domain,

the output features axis represents the same set of features as the input features axis (i.e.

color channels). However, in the formulation of the conflict forecasting solution described

here, the output features domain is change in logged fatalities, a feature not included in the

input features set. This difference requires the model to translate between distinct input

and output domains, distinguishing it from the typical next frame prediction task in which

the input and output domains comprise the same features.3

2.2 Data Preparation

The PRIO-GRID data include monthly observations of state-based conflict fatalities and

associated covariates (“features”) covering the continent of Africa. Only those cells that

contain land are included and therefore do not form a full rectangular grid. I augment

2In video, the features axis may represent, for example, color channels. In our case, features are PRIO-
GRID cell-level covariates.

3More specifically, the input comprises a tensor with dimensions representing time step, longitude, lat-
itude, and features. The output comprises a tensor with dimensions representing longitude, latitude, and
time leads, where the time leads correspond to s ∈ {1, ..., 7}.
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these data by filling in all missing cell-months, those in the ocean, to produce a complete

rectangular grid that includes all original PRIO-GRID cell-months. For each new cell-month,

missing values are replaced with zero. An additional feature is added to every cell-month to

indicate whether any missing feature value has been replaced with zero. The ViEWS team

imputed missing PRIO-GRID data for all cells containing land prior to distributing the data.

I reshape the data into an array with dimensions corresponding to time steps, one-half

degrees longitude, one-half degrees latitude, and features. A 12-month sliding window over

the time dimension produces a new 12-month sequence for every outcome month from Jan-

uary 1990 through August 2020. The resulting array comprises 368 sequences, each of shape

[12 months × 178 one-half degrees longitude × 169 one-half degrees latitude × 14 features].

These sequences are unique but contain overlapping observations; adjacent sequences con-

tain 11 months’ worth of identical feature values and one month each with differing feature

values.

For every 12-month sequence of cell features, the corresponding target value is an ar-

ray with dimensions comprising one-half degrees longitude, one-half degrees latitude, and

monthly time steps. Therefore, a target value array is of shape [178×169×7]. A given value

in this target array, ∆i,j,s ln(fatalities), corresponds to the change in ln(fatalities) for the cell

at half degree longitude i, half degree latitude j, and future time step s.4 A single input

sequence and output set is depicted in Figure 1. For the remainder of this paper, subscripts

i and j are suppressed such that ∆s will denote the changes in all cells at time step s.

The chosen features are a subset of those included in the ViEWS team’s random forest

benchmark model (Jansen et al., 2020). I have removed time-lagged predictors to reduce

the memory requirements of the model; however, the time-lagged information remains in

the model as any given observation is represented as a sequence of variable values over the

preceding 12-month period. The remaining fourteen features are described in Table 1. The

thirteen PRIO-GRID features included in the model are retained from the benchmark model

4Here ln(fatalities) is shorthand for ln(ged best sb + 1).
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Table 1: Features included in predictive ConvLSTM model of ∆ ln(fatalities).

Variable Description
ln ged best sb The natural log of the best estimate of monthly battle

deaths from PRIO.
pgd bdist3 Distance from grid centroid to the nearest land-contiguous

national border, km.
pgd capdist Distance from grid centroid to national capital city, km.
pgd agri ih Agriculture, percentage cell area.
pgd pop gpw sum Total cell population.
pgd ttime mean Average travel time to nearest major city.
spdist pgd diamsec Distance to secondary diamond deposits.
pgd pasture ih Pasture, percentage cell area.
pgd savanna ih Savanna, percentage cell area.
pgd forest ih Forest, percentage cell area.
pgd urban ih Urban, percentage cell area.
pgd barren ih Barren, percentage cell area.
pgd gcp mer Gross cell product, USD.
missing value indicator Indicates one or more missing feature values have been as-

signed 0.0.

after removing all time-lagged features and features that are not originally measured at the

cell-month level.5

The data are partitioned into training, validation, and test sets according to the ViEWS

Competition guidelines. The partitions include years 1990–2013 (training set), 2014–2016

(validation set), and 2017–2019 (test17−19 set). Forecasts made on the validation and test17−19

sets are referred to by the ViEWS team as task 3 and task 2, respectively. Task 1 refers

to forecasts made for a fourth partition that includes the six months from October 2020

through March 2021 (test20−21 set). The test20−21 set represents a hard out-of-sample test

in the sense that forecasts for these months were due to the competition organizers prior to

October 2020.

5Due to an oversight, one cell-level feature included in the benchmark model was omitted from this
analysis: spdist pgd petroleum, distance to the nearest petroleum resource. Additionally, PRIO provides
measures of one-sided and non-state violence similar to the state-based violence measure utilized here. While
these are included in the benchmark model, I do not include them in the competition entry model. However,
I reestimate the ConvLSTM to include these additional predictors and discuss the results in Section 3.1.
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2.3 Convolutional LSTM Neural Network

ConvLSTM recurrent neural networks build on standard fully-connected feed-forward arti-

ficial neural networks by introducing two specialized layer types. The first is the spatial

convolution. A neural network that contains convolutional layers is called a convolutional

neural network (CNN). Spatial convolutions can be thought of as a set of filters that, for each

pixel in an image, compute a weighted combination of adjacent or nearby pixel values. A

convolution’s window size is typically predetermined by the researcher but the convolution’s

weights are learned model parameters. Stacking convolutions in a series of layers such that

the output of the first set of convolutions is the input to a later convolutional layer allows a

CNN to learn convolutions that act as feature extractors at differing spatial scales.

ConvLSTMs further expand on traditional CNNs by incorporating a recurrent compo-

nent called a long short-term memory (LSTM) cell (Hochreiter and Schmidhuber, 1997).

LSTM layers allow neural networks to model temporal dependencies in sequential data. An

LSTM layer takes as input the features from the current step of a sequence as well as the

layer’s own output from the previous step of the sequence. Input gates and forget gates,

themselves learned parameters of the LSTM, control the ratio of current and past informa-

tion retained in each sequence step. ConvLSTMs combine convolutional layers with LSTMs

by accepting as input a 3-dimensional tensor, a sequence of images, and convolving across

the two spatial dimensions (Shi et al., 2015). Therefore, ConvLSTMs are able to model local

spatial dependencies over time: the prediction for a given cell (i.e. pixel) is a function of its

own past feature values and its neighbors’ past feature values.

The model described below is a deep neural network comprising several layers. The

inputs to subsequent layers are the outputs (“activations”) of preceding layers. I refer to

this model as a ConvLSTM for simplicity, but it actually comprises a series of convolutional

and ConvLSTM layers.
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Figure 1: Input and output data shapes. A single input example, Xi, consists of a time
series of feature maps: twelve time steps (months) of maps per feature. There are 14 unique
features. The output is a set of seven grid cell maps: one per s ∈ {1, ..., 7}.
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Figure 2: Model architecture diagram. Layer output sizes, per training sample, are given in
parentheses. Activation functions, when appropriate, are given underneath the layer name.
The input diagram does not depict the full set of features or time steps in a given training
sample. Regularization layers are shaded gray.
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2.4 Model Description

The primary model described herein is called the competition entry model to indicate that

predictions generated by this model were submitted to the competition. The competition

entry model consists of a 3-dimensional convolutional layer followed by two bidirectional

ConvLSTM (BiConvLSTM) layers and a final ConvLSTM layer. Inputs are batch normalized

and 20% weight dropout is applied between all layers to help prevent overfitting the model

to the training data (Ioffe and Szegedy, 2015; Srivastava et al., 2014). I do not apply any

data augmentation techniques.6

The first convolutional layer comprises 20 filters, each of size [1 × 1 × 14]. Therefore,

the same 20 convolutions are learned and applied to all cells for all time steps. Convolution

weights are applied across features but not across space at this point (hence the unit values in

the longitude and latitude dimensions). This can be thought of as a feature selection step: 20

features are computed for each cell-month. The computed features are linear combinations

of the 14 features associated with each given cell-month. These computed values are then

bound between (−1, 1) with the help of the hyperbolic tangent activation function.

The two BiConvLSTM layers consist of 20 and 10 convolutional filters each, with kernel

sizes of [10 × 10] and [5 × 5], applied over the spatial dimensions. Therefore, the first set

of convolutions corresponds to 5◦ of latitude and longitude while the second corresponds to

2.5◦ of latitude and longitude. These layers are bidirectional, meaning that the model is

trained by reading sequences in both the forward and backward time directions (Schuster

and Paliwal, 1997). Each of the first three layers returns a sequence of the same spatial and

temporal shape as the input.

The final layer of the model is a ConvLSTM comprising 7 filters. The model output shape

is [178× 169× 7], corresponding to seven “images” of the spatial grid, one per forecast time

6Dropout and batch normalization are often considered forms of regularization, though dropout is also
equivalent to data augmentation under certain circumstances (Wager, Wang, and Liang, 2013; Zhao et al.,
2019). Nevertheless, data augmentation applied to the input images (e.g., skew or rotation) may result in im-
proved predictive performance and could be a promising avenue for future work (Shorten and Khoshgoftaar,
2019).
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step. No activation function is applied to the output (i.e. linear activation) as the target

values are real-valued and unbounded. The full model architecture is depicted in Figure 2.

The model itself contains 281,016 trainable parameters. I use RMSprop to fit the model

and mean squared error (MSE) to compute model loss (Hinton, Srivastava, and Swersky,

2012). The model is trained with a batch size of 8 for 75 epochs on a single RTX 2080 Ti

GPU.7 The model is fit to only the first 270 12-month sequences (covering January 1990–

June 2013) to avoid training on the validation and test sets. However, these 270 training

sequences contain 113,709,960 unique input pixel values (not including target values). A

single frame from a training example, one time slice, comprises 178 × 169 × 14 = 421, 148

unique values. I adjusted the model architecture, including the number and types of layers,

dropout percentage, and training hyperparameters, in response to out-of-sample performance

on the validation set. The test sets, those that include 2017–2019 and 2020–2021, were

unobserved during model training, including while tuning, and were only utilized when final

predictions were made for the contest.

2.5 What Doesn’t the Model Know?

This model does not have any absolute information about spatial or temporal location; no

features akin to spatial or temporal fixed effects (e.g., country, season, or year) are included.

Furthermore, no country-specific covariates are included. Distance to the nearest country

border is included, though, and the model may learn to identify conflict-prone areas by

the nearest border contours and unique geographic features.8 However, including absolute

identifiers for the grid cell, country, or time-unit would be trivial and may lead to improved

predictive performance. Additional features measured at the cell-month level, or at higher-

levels of aggregation, would be included by extending the features axis of the input arrays

described in Section 2.2.

7Training time is approximately 1.5 hours.
8Though this is not shown here and is left for future work.
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Table 2: Out-of-sample predictive performance on validation and test sets.

Competition Entry Benchmark

Validation Test17−19
∗ Test20−21 Test20−21

Steps MSE TADDA MSE TADDA MSE TADDA MSE TADDA
s = 2 0.021 0.014 0.022 0.016 0.024 0.018 0.053 0.138
s = 3 0.021 0.014 0.022 0.016 0.028 0.019 0.059 0.142
s = 4 0.021 0.014 0.022 0.017 0.025 0.020 0.052 0.142
s = 5 0.022 0.014 0.023 0.016 0.036 0.024 0.064 0.150
s = 6 0.021 0.014 0.023 0.017 0.036 0.021 0.063 0.148
s = 7 0.022 0.015 0.023 0.018 0.035 0.025 0.064 0.153
∗The competition organizers report slightly different MSE and TADDA values
(means: MSE=0.024, TADDA=0.018).

3 Model Evaluation

3.1 Test Partition Evaluation

Model performance on the out-of-sample validation and test sets is given in Table 2. The

MSEs for each time step fall between 0.020 and 0.022 for the validation set and between 0.021

and 0.023 for the test17−19 set. This corresponds to an approximate 30% reduction in MSE

when compared to the benchmark model offered by the ViEWS team in their preliminary

evaluation. TADDA values for both sets fall between 0.013 and 0.018, a substantial im-

provement over the ViEWS team’s benchmark model at 0.14. TADDA stands for “Targeted

Absolute Distance with Direction Augmentation” and is calculated using the implementa-

tion found in the OpenViEWS2 software package.9 This metric was introduced specifically for

the ViEWS Prediction Competition by Vesco et al. (2022a,b). TADDA is the mean absolute

deviation between observed and predicted values with an added L1 penalty for predictions

made in the wrong direction; lower values of TADDA indicate better model performance.10

MSE and TADDA scores for the test20−21 set are provided both for the competition en-

try model and the benchmark model. The competition entry model performs worse on the

9https://github.com/UppsalaConflictDataProgram/OpenViEWS2.
10TADDA = (

∑N
i=1 |∆i−∆̂i|+td)/N where td is a penalty, d represents a chosen method for handling near-zero

values, and ε (not shown) defines “near zero.” ε = 1 is chosen following the default in OpenViEWS2.
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(a) Benchmark model. (b) Competition entry model.

Figure 3: Observed versus predicted change in ln(fatalities) in test20−21 set.

test20−21 set than it does on the test17−19 set, especially for longer time leads. However,

the competition entry model bests the benchmark model by 50% in MSE and by nearly an

order of magnitude in TADDA. Of the eight total entries to the sub-state prediction task,

the competition organizers ranked this ConvLSTM among the top two highest performers,

with the other being the model by D’Orazio and Lin (2022) (Vesco et al., 2022a).

Subsetting the test20−21 set to only those cell-months that experienced violence escalation,

the competition entry model predicted an escalation of equal or greater magnitude only

0.7% of the time. The benchmark model did so for 3.2% of observations. However, when

looking only at those cell-months that experienced de-escalations, the competition entry

model predicts de-escalations of equal or greater magnitude 43.8% of the time, compared to

the benchmark model’s 4.8%. This is apparent in Figure 3. The benchmark model tends to

underpredict both escalations and de-escalations while the competition entry model appears

to perform better with respect to predicting the magnitude of de-escalation.

Forecast accuracy decreases as time steps increase, but not monotonically so. This may

be due to the fact that all differences are taken with respect to the current time step, t = 0,

12



Table 3: Estimated average feature importance based on self-attention layer.

Feature Importance
ln ged best sb 0.284

pgd pop gpw sum 0.271
pgd urban ih 0.207

pgd ttime mean 0.051
pgd agri ih 0.040
pgd gcp mer 0.035

pgd forest ih 0.029
spdist pgd diamsec 0.017

pgd barren ih 0.016
pgd bdist3 0.014

pgd savanna ih 0.012
pgd pasture ih 0.011

missing indicator 0.010
pgd capdist 0.010

not with respect to the preceding time step, s−1. Therefore, a sequence of ln(fatalities) that

looks like (1, 0, 0, 0, 0, 0, 0, 0) for time steps t = 0 through s = 7 would produce ∆s∈{1,...,7}

of (−1,−1,−1,−1,−1,−1,−1). This may minimize the propagation of errors over time as

bad predictions at s = 2 would compound with future prediction errors were the predicted

differences always taken with respect to the preceding month (rather than month t = 0).

Figures 4 (a) and (b) depict predicted versus observed values for a portion of Africa in

December 2018 (from test17−19). The gradient legends reveal that the model underpredicts

increases in violence; predicted increases fall far below observed increases in magnitude.

However, the model predicts low level increases in violence for many more cells than actually

experience increases in violence, highlighting the difficulty of predicting conflict onset and

escalation. Forecasts of decreases in violence appear to be more spatially constrained, pre-

sumably because the model relies on the existence of violence at t = 0 to predict decreases in

later time steps. Despite the spatial overprediction of increases in violence, those predictions

do appear to cluster around actual violence hot spots.

In a second model, I add a softmax attention layer (Bahdanau, Cho, and Bengio, 2015)
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Figure 4: Top row: Predicted (a) and observed (b) values for ∆s=7 ln(fatalities) for Decem-
ber 2018. Middle row: Predicted values for ∆ ln(fatalities) for the PRIO-GRID months of
October 2020 (c) and March 2021 (d). Bottom row: Maximum predicted values for every
cell in the period from October 2020 until March 2021 are depicted in (e). Color values are
scaled per map. The zero value is white for all maps.

14



Table 4: Out of sample predictive performance for the single feature and expanded predictors
models. All performance metrics given for the test17−19 set.

Expanded Features Single Feature

Steps MSE TADDA MSE TADDA
s = 2 0.022 0.016 0.022 0.013
s = 3 0.022 0.016 0.022 0.013
s = 4 0.022 0.016 0.022 0.014
s = 5 0.023 0.016 0.022 0.013
s = 6 0.023 0.016 0.022 0.013
s = 7 0.023 0.016 0.022 0.014

to the normalized input and prior to the first convolutional layer.11 I then compute feature

importance scores by averaging each feature’s activation values on the attention layer for

all cell-months. Estimated average feature importance scores are given in Table 3. Logged

fatalities, population, and urban status appear to be the most influential (highly-weighted)

predictors.

In fact, when the competition entry model is reestimated with only a single feature,

ln(fatalities), the scores are similar to or better than those achieved by the full model. The

single feature model achieves mean MSE and TADDA scores of 0.021 and 0.011 on the

validation set and 0.022 and 0.013 on the test17−19 set. Out-of-sample performance metrics

for the single feature model are given in Table 4. Similarly, adding in three additional features

that were included in the benchmark model but were not included in the competition entry

model, non-state violence, one-sided violence, and the distance to the nearest petroleum

resource, results in nearly identical performance to the competition entry model. Test set

scores for this model, called the expanded features model, are also given in Table 4. These

results reinforce the importance of ln(fatalities) as a predictor of ∆s ln(fatalities) relative to

all other evaluated predictors.

11MSE for the model that includes the attention layer is nearly identical to the model without the attention
layer.
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3.2 What Does This Model Tell Us About Conflict?

Even with the relative black box nature of neural networks, much less ConvLSTMs, investi-

gation of the model’s predictions can reveal information about conflict dynamics.

Figure 5 (a) depicts predicted values of ∆s=2 ln(fatalities) versus observed values. When

observed values are negative, predicted values are strongly correlated with the observed

values. In other words, if there exist non-zero fatalities at t = 0, the model generally

predicts a decrease in fatalities at s = 2. Given the presence of violence, de-escalation

is simply more likely than further escalation, so much so that the model generally favors

negative predicted values. However, when the observed value is zero or greater, the model

often (but not always) predicts no change. This can be seen in the bunching of predicted

values around y = 0 when x > 0. The values at x = 0 and y > 0 represent predicted

escalations that did not occur. Overall, the model appears to better predict de-escalation

than it does escalation. This probably reflects the fact that violence onset and escalation are

relatively rare and that the available features contain little to no leading signal of escalation.

Figure 5 (b) further illustrates the nonlinear relationship between ln(fatalities) at t = 0

and ∆̂s=2 ln(fatalities). When observed ln(fatalities) values are greater than 0, the model

often predicts a corresponding negative change in fatalities. In other words, the model

predicts that the number of fatalities will revert to zero over time. However, the amount

by which fatalities change is sometimes less than the observed number of fatalities, perhaps

indicating that reversion to zero fatalities does not always happen within s = 2 steps. For

lower magnitude positive fatality values, the model sometimes even predicts further increases;

this can be seen in the portion of the graph bound by (0,0) and (6,4). The predictions for

that lie above ∆̂s=2 ln(fatalities) = 0 represent predicted conflict escalations. When there are

no logged fatalities at t = 0, the model has learned to predict 0 or a positive value; fatalities

can only stay the same or increase.12 Predicted increases from ln(fatalities) = 0 represent

12There are some negative predicted values when logged fatalities are 0, but these are very small in
magnitude.
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(a) Actual vs. predicted ∆s=2 ln(fatalities). (b) ln(fatalities) at t = 0 vs. ∆̂s=2 ln(fatalities).

Figure 5: Predicted versus observed values at s = 2 (left) and predicted values at s = 2 ver-
sus observed ln(fatality) values at t = 0 (right). Dashed lines indicate ∆̂s=2 ln(fatalities) =
∆s=2 ln(fatalities) (left) and ∆̂s=2 ln(fatalities) = ln(fatalitiest=0) (right), the expected
change in fatalities if the model simply predicted the negative of the logged casualty count
at time t = 0. Plots include all cell-months in the validation set and test17−19 set .
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conflict onsets.

4 Forecasts

4.1 Notable Predicted Escalations

The single largest predicted increase in violence for the period from October 2020 through

March 2021 is ∆̂s=4 ln(fatalities) = 3.148 obtained by PRIO-GRID cell 127139. This is

expected in December 2020, though similarly large increases are also predicted for the same

cell in October 2020 and November 2020. This particular cell is located in Rwanda and is

near the border with Uganda and the Democratic Republic of the Congo.13 Figure 4 (e)

depicts the maximum predicted change in log fatalities for every cell in the equatorial region

of Africa from October 2020 through March 2021.

Two cells in Nigeria and near the border with Cameroon, 146547 and 147987, obtain

large predicted increases in violence, both with expected changes in ln(fatalities) of between

1 and 2. These are predicted to occur in November 2020 and March 2021, respectively. Both

cells experienced escalations in violence, relative to October 2020, in the expected months.

These are included in SetA, a collection of cell-months described below and of particular

interest to the ViEWS Competition organizers.

There is also evidence that the model doesn’t rely solely on past violence within a given

cell when predicting future violence for that cell. One cell, 137903, obtains a predicted

increase in logged battle deaths of ∆̂s=7 ln(fatalities) = 0.695 where no previous increase in

logged battle deaths of similar magnitude had been recorded prior to the October 2020–

March 2021 period. This grid cell is located in Cameroon and the increase is predicted to

occur in November 2020. Because this prediction is not the result of past violence within

this particular cell, it is likely due instead to nearby cells that experienced relatively high

levels of violence in August 2020. However, this escalation did not occur.

13pgm 127139 did not experience any escalation in violence during the period of test20−21.
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4.2 Selected Cases

Organizers of the ViEWS Prediction Competition requested that a selection of cell-months

on the borders of Nigeria, Cameroon, and Chad as well the border between Mozambique and

Tanzania be assessed specifically for the months of October 2020 through March 2021. These

will be referred to as SetA and SetB, respectively. I explored many techniques for model

inspection, but none were obviously appropriate for this particular request. Example-based

explanation methods often estimate some form of feature importance based on a single given

observation (i.e. data point) (Lundberg and Lee, 2017). In the case of the ConvLSTM,

because a single data point corresponds to a [178× 169× 7] array, many of these techniques

would report average feature scores over the entire Africa grid for seven time steps. Local

Interpretable Model-agnostic Explanations (LIME) allows for estimating feature importance

in an image at the pixel-level, but it is not obvious how this would be leveraged to provide cell-

specific feature weights in a ConvLSTM model with both temporal and spatial dependencies

(Ribeiro, Singh, and Guestrin, 2016).

Instead, I simulate a set of interesting counterfactual examples and compare the model

predictions for the chosen cell-months to predictions based on the associated counterfactual

examples. I first create two counterfactual sets: within set counterfactuals and outside set

counterfactuals. For within set counterfactuals, given features are replaced with their overall

median values for the cells in SetA and SetB. For the outside set counterfactuals, the selected

features are replaced with their overall median values for all cells not included in either SetA

or SetB. Due to computational constraints, all cells of interest are treated at once rather than

cell-by-cell. The within set counterfactuals represent changes to the time series of features

within the selected cells of interest. The outside set counterfactuals correspond to the spatial

effects of each feature from the cells not in the set of cells of interest. For each of the 13

model features, not including the missing value indicator, a set of predictions is generated on

the counterfactual example created by replacing the values of that feature with the feature’s
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Table 5: Pearson’s correlation coefficient between counterfactual examples and predictions
with the full feature set (i.e., no features having been replaced). Within set indicates that
variables in the counterfactual examples are replaced with their overall median values for the
grid cells within SetA and SetB ; outside set indicates that the variables in the counterfactual
examples are replaced with their overall median values for all grid cells except those in SetA
or SetB.

SetA SetB

Feature Within Outside Within Outside
ln ged best sb -0.157 0.862 0.036 0.978
pgd bdist3 0.810 0.809 0.975 0.972
pgd capdist 0.805 0.792 0.967 0.979
pgd agri ih 0.811 0.801 0.974 0.968
pgd pop gpw sum 0.802 0.807 0.973 0.978
pgd ttime mean 0.804 0.842 0.974 0.974
spdist pgd diamsec 0.807 0.798 0.969 0.974
pgd pasture ih 0.803 0.813 0.973 0.976
pgd savanna ih 0.808 0.824 0.969 0.977
pgd forest ih 0.805 0.805 0.973 0.972
pgd urban ih 0.803 0.819 0.973 0.977
pgd barren ih 0.797 0.823 0.973 0.971
pgd gcp mer 0.804 0.803 0.974 0.976

median value in the entire dataset.14

Exploring these counterfactual predictions may help to reveal those features the model

relies on most heavily given the cases in question, but these should not be interpreted as

causal effects. Furthermore, the change in logged fatalities may be overdetermined by the

given data and dropping variables from the model does not necessarily tell us whether the

remaining set of variables would be unable to match the full model’s predictive power were it

to be re-trained using only those remaining variables. What these counterfactual examples

do reveal is the full model’s dependence on a given feature when making predictions for the

given set of cell-months.

The results of this counterfactual analysis are given in Table 5. The table reports the

Pearson’s correlation coefficient (ρ) values between the predictions made with the full set of

features and those made with the set in which a given feature has been replaced by its median

14This method was developed specifically for this paper but bears some resemblance to the occlusion
sensitivity method described by Zeiler and Fergus (2014).

20



value. The table makes clear that the model relies heavily on the past logged battle deaths

within SetA and SetB. When ln ged best sb is replaced with its median value for those cells

within SetA and SetB, the resulting predictions are essentially uncorrelated with the original

predictions. No other variables appear to have such a substantial impact on the model’s

predictions when replaced with their median values. For SetA, all other counterfactual

examples, both within set and outside set, result in predictions that are highly correlated

with the original predictions (ρ ≈ 0.80). This is even more true for SetB in which any

single median substitution results in predictions that are nearly perfectly correlated with the

original predictions (ρ ≈ 0.97). However, while these counterfactuals should highlight the

relative importance of past battle deaths within the cells of interest to forecasts of future

changes in violence, they only tell us that this feature is a necessary predictor, not that it

is sufficient on its own. Interestingly, replacing ln ged best sb with its median value for

all cells not in SetA or SetB, the outside set counterfactual, appears to make near the least

amount of difference, as measured by ρ, among all features. This may change if the analysis

were to be redone cell-by-cell rather than simultaneously for all cells in both SetA and SetB.

Line graphs depicting the time series of observed and predicted changes in ln(fatalities)

for all grid cells between July 2017 and March 2021 are given in Figure 6. The line graphs

depict values for s = 7, seven-month differences in logged fatalities. Values before September

2020 are observed while values after that point are predicted based on features from at

least seven months prior. Each line represents a single cell over time. The graphs provide

further evidence that the model underpredicts conflict escalation—very few the forecasts

after September 2020 extend far above y = 0. This is despite the fact that escalations are

not particularly rare in SetA or SetB during the preceding months. On the other hand, the

model predicts large decreases in violence on the same order of magnitude as those observed

prior to September 2020.
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Figure 6: ∆s=7 ln(fatalities) over time for SetA (top), SetB (middle), and all grid cells
(bottom). The apparent diamond pattern in the bottom graph is an artifact due to the
semi-transparent color and the time trends having been removed from the time series by
differencing. All values are seven-month lagged differences. September 2020 is omitted
because that month’s ln ged best sb was not available at the time that predictions were
made and participants were not asked to forecast that month.
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5 Conclusion

The analysis here highlights the difficulty of predicting conflict onset. Onsets, escalations in

violence from zero, are challenging due to their rarity and the lack of time-varying predictors

that reliably anticipate the initiation of violence. Most predictors used in this paper, for

example, typically see substantial change only over many years, not months. The primary

exception to this is the lagged battle deaths estimate which is particularly helpful for antic-

ipating conflict de-escalation. When lagged fatalities are zero, the only direction for change

in fatalities to go is up. However, due to the extreme rarity of onset, models seem to predict

very small escalations at most; zero lagged fatalities is not strongly predictive of substan-

tial escalation in fatalities at any particular time. Inclusion of more rapidly time-varying

and geographically localizable covariates may improve the performance of conflict forecast-

ing models with respect to escalation. One promising source of such predictors is political

event data, now widely available from a variety of sources including ICEWS and the Phoenix

project; though, Chiba and Gleditsch (2017) report only modest gains from incorporating

event data into predictive models of conflict.

While the convolutional component of this model parameterizes spatial weights allow-

ing for flexibility with respect to spatial dependencies, it also assumes an equal-area grid.

However, the PRIO-GRID data are degrees-based: one-half degrees latitude and longitude

per cell. Therefore, cell areas vary from 3098.0 km2 to 4521.5 km2. Because of this, the

learned convolutions result in differing spatial weights for different regions of the map. More

specifically: the spatial convolutions scale with the centroid distances between adjacent cells

and therefore represent differing spatial areas for different parts of the globe. The easiest

solution to this problem would involve interpolating values to produce an equal-area grid and

then transforming predictions back into the original grid. Alternatively, it may be possible

to correct for unequal cell sizes by reformulating the problem as prediction on a graph where

edge weights are inversely proportional to the distances between centroids of adjacent cells.

This may result in better predictive performance and would be especially important were
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future work to focus on interrogating the learned convolutions. Simply controlling for cell

land area by including it as an additional feature will likely not allow the model to correct for

the fact that the convolutional filters represent differing spatial areas in different regions.15

Indeed, future plans for this research project involve interrogation of the learned spatial

convolutions. These convolutions represent spatial weights associated with predictive fea-

tures of conflict and may provide insight about the appropriate methods for evaluating the

decay of an effect with distance. For example, we could determine whether the predictive

power of various features decays linearly or geometrically with distance. This could have

implications for how spatially-lagged variables are computed for spatial regression models.

Similarly, an attention layer on the LSTM portion of this model would reveal learned

temporal dynamics of conflict. These attention activation values are conditional on each

sample’s feature values and, therefore, this modified ConvLSTM model may help researchers

to identify distinguishing characteristics of recurring political violence and one-time violent

events.

15Given the noisiness of social processes and data collection, as well as the natural geographic and social
heterogeneity of PRIO-GRID cells, I am not convinced that correcting for land area differences of up to 50%
will result in substantially improved predictive performance.
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