Digitizing COVID-19 Policy Documents and
Measuring Plain Text Fidelity

Benjamin J. Radford?3, Jingjing Gao"*, Ivan Flores
Martinez'#, and Jason Windett'®

"University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

2Email: benjamin.radford@uncc.edu

3Assistant Professor of Public Policy, Assistant Professor of Political Science and Public Administration
4Graduate Student, Public Policy

SAssociate Professor of Public Policy, Associate Professor of Political Science and Public
Administration

Abstract

The COVID-19 pandemic led to a flurry of executive orders (EO) and policy directives at the state and local level
as the United States struggled to adapt policy to mitigate the public health crisis. It also resulted in an explosion
of research on both the coronavirus itself and the pandemic’s societal impact. Unfortunately, many of those
policies were written, signed, scanned, and uploaded in portable document format (PDF) to government
websites. This resulted in their contents being digitized as images rather than as machine-readable text.
To facilitate current research demands, we have used optical character recognition (OCR) tools to extract
machine-readable text from these documents and made these “plain text” versions available online. Here we
describe the pre and postprocessing steps as well as provide an evaluation of the resulting document quality.
We suggest unsupervised methods for scoring output texts that can be applied to other optical character
recognition tasks when ground truth plain texts are unavailable. We show that simple preprocessing modestly
improves OCR performance on scanned orders and directives.

Keywords: Optical character recognition, executive orders, COVID-19.

Introduction

The COVID-19 pandemic has prompted researchers from many disciplines to turn their attention to
the novel coronavirus. The rapidly evolving government policies are of particular interest to social
scientists. As of late May, 2020, we have identified 2,213 executive orders (EO), policy directives, and
declarations addressing COVID-19 from US states and counties. Some states have issued multiple
policy documents per day during the crisis. Unfortunately, the texts of many of these orders are
unavailable in machine-readable form. Unlike the federal government which is required to make all
textual data as machine readable, states and other governments may archive in any format. As such,
most of the physical documents themselves are signed and scanned as images, then compiled
into PDF (portable document format) files.! In order for researchers to better make use of the
contents of these orders, we have applied optical character recognition (OCR) techniques to extract
the machine-readable “plain texts” from these documents. Plain text, or machine-readable, here
refers to digital representations of alphanumeric characters, symbols, and whitespace representing
human-readable content and lacking any markup, styling, or formatting.

We are making both the original, unprocessed, documents and their plain text counterparts
available to the public at URLremovedforpeerreviewanonymity. Below, we describe the process
we used to produce plain text versions of these documents and evaluate the quality of the resulting
data.

1. A small number of the PDFs are machine-readable. However, for consistency, we treat all PDF documents as non-
machine-readable images.

benjamin.radford@uncc.edu
URL removed for peer review anonymity
Benjamin Radford

2.1

2.2

STATE OF SOUTHDAKITA l STATE F SOUTH DAKITA
DIVICE OF THIE GOATRNOR DAVICE O THIE COATRADR
EXBCUTIVE GRDER 30840 EXECUTIVE CIRDER 350000

@
A Bt

e _d

(a) Original page. (b) Large connected components. (c) Page after preprocessing.

Figure 1. Example of PDF preprocessing stages on South Dakota EO 2020-09.

Digitizing Executive Orders
We divide our method for extracting text from executive orders into three stages: preprocessing,
optical character recognition, and postprocessing.

Preprocessing

We begin by rendering the PDF documents to portable network graphics (PNG) format page-by-page.
Each page image is then converted into a bitmap and operated on independently. There are two
primary image-based preprocessing steps.

First, we use k-means to segment the foreground and background of the image. Every pixel
in the image is defined by a red, green, blue color value (RBG). k-means with k = 2 is used to
partition pixels into two clusters based on their color values. The larger of these corresponds to
the background of the image (white or off-white in most cases) while the smaller corresponds
to foreground elements. All pixels that are nearest to the majority cluster centroid, those in the
“background cluster,” are re-colored to white. This removes subtle background patterns in the
document’s stationery or other noise. Because the images are large and often comprise many
million pixels, a sample of 10,000 pixels is chosen for training the k-means model. Once trained,
assigning all pixels to either of the clusters is fast.

Second, we use an algorithm to detect connected components (contiguous shapes) on each
page. We transform the page into grayscale and then binarize it into black and white based on
a threshold.? To identify connected components in the foreground elements of the binarized
image, we use the two-pass algorithm described by Wu, Otoo, and Suzuki (2009). Any connected
components that occupy 0.25% to 99% of the pixels on the page are made white (i.e. background).
This removes decorative borders, state seals, most signatures, and header decorations.

Optical Character Recognition

Tesseract is an open source OCR engine that was originally developed at Hewlett Packard Laborato-
ries and is now sponsored by Google (Vincent 2006). Early versions of Tesseract utilized a multi-step
OCR process that included contour detection, polygonal approximation, and a two-pass adaptive
classifier to recognize characters (Smith 2007). We use the latest release of Tesseract that instead

2. Ourimages take values 0 (black) to 255 (white). All values lower than or equal to 254 are mapped to 0; values of 255
remain the same. This means all foreground pixels identified by k-means are black and all background pixels are white. We
use a multi-pass convolution to dilate the foreground elements prior to identifying connected components.

Radford et al. | Working Paper 2

2.3

— TXTorig lf'{/‘\\ /{\‘
21 i B
........ PDForig /-'l'{“gi \} /Iz “‘
———— PDFcIean /r :: \’\ }II: \“%
el RN =22/ 11NN
0.75 080 085 090 095 1.00
TNCBscore N
o
/{"l %
Zi N\
A0
e :
0.75 0.80 0.85 090 0.95 1.00 0.4 0.6 0.8 1.0
KKscore MLCscore

Figure 2. Distribution of text quality scores for documents in each of the three corpora. Note the differing
x-axis scales. Low scores for TXTorig 0N MLCscore are due, at least in part, to single-word lines that result from
menus of hyperlinks that are retained in the plain text representations of html pages.

relies on a convolutional long short term memory (hereafter LSTM) recurrent neural network.

We use the default Tesseract v.4.0 configuration with one exception. We specify page segmen-
tation mode 4: Assume a single column of text of variable sizes. Tesseract must segment the text
portions of an image prior to inputting those image segments into the LSTM model. Among the
many options are the instructions to treat the image as a single line of text, a single word, a uniform
block, or many separate blocks. The majority of documents in our corpus are single-columned, but
the font sizes and alignments may change within a single page of a single document. Furthermore,
while there is vertical whitespace in some documents, we found that these vertical breaks rarely
corresponded to independent columns and instead corresponded to specific within-line formatting.
Therefore, we selected the single column mode to prevent these vertical whitespace breaks from
resulting in segmentation of the page into multiple columns.’

Postprocessing

We take limited postprocessing steps. Tesseract frequently fails to properly identify the character I,
so we rely on heuristics to correct some instances of this. The characters 1, [, and | are replaced
with I.* Hyphens at the ends of lines may indicate a single word has been split at the line break or
that a hyphenated word is split. When we encounter end-of-line hyphens, we remove the hyphen
and concatenate the last word of the hyphenated line with the first word of the subsequent line.
This candidate word is then checked against an English dictionary. If the unhyphenated candidate
word is in the dictionary, it is accepted; otherwise, we remove the line break but maintain the
hyphen to produce a single hyphenated word. Consecutive pages are joined by a double line break.

Evaluation

OCR output quality is ideally evaluated via comparison to the true text of the document in question.
Unfortunately, in applied settings such as ours, the original machine-readable texts of the executive
orders are unavailable. Were this not the case, we would have simply relied on the machine-readable
texts all along and not bothered with OCR. We refer to the evaluation of OCR processes for which the
ground truth texts are unavailable as “unsupervised evaluation.” Here, we recommend a strategy for
unsupervised evaluation of applied OCR tasks. In particular, we report four unsupervised OCR scores

3. For example, in its default configuration, Tesseract would sometimes interpret a series of aligned whereas clauses as
two columns: one consisting of a series of “whereas” and another consisting of the clauses themselves.
4.1 and [are only replaced when they do not appear as a pair within a single line.

Radford et al. | Working Paper 3

ATNCBqcore 1 w0 h o s see
AKKqcore o ey {H— 0 © ®
ASQccore - . . - e || — o c® © o o
AMLCeore{ © o® o nam, cmomm cme oo b o .
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Figure 3. Difference in scores per document, PDFcjean—PDF oig.

on three different document sets: the extracted texts from PDFs that have not been preprocessed
(PDF,yig), the extracted texts from the same PDFs after they have been preprocessed (PDFiean),
and the true text from COVID-19 policy orders that were originally distributed in machine-readable
format (TXTyig).”

The first two scoring methods, TNCBgore and KKscore, are heuristic approaches that identify
“garbage” tokens (whitespace-delimited groups of symbols) and valid word tokens (Taghva et
al. 2007; Kulp and Kontostathis 2007).° The third method for identifying garbage tokens is to match
tokens against a known dictionary.” Tokens that are not included in the dictionary and are not
Roman or Arabic numerals are considered garbage tokens. Because our documents are written
primarily in English and, in some cases, Spanish, we accept either English or Spanish words. We
also add “COVID-19”, “COVID19”, and “coronavirus” to the dictionary. This measure is called the
“simply quality” score, SQgore (Alex and Burns 2014). For all three measures, the score we report on
a per-document basis is 1 — (# garbage tokens in document/ tokens in document). Therefore TNCBscore, KKscore,
and SQq.ore Can be interpreted as the proportion of valid word tokens present in a document.® Alex
and Burns (2014) recommend a document-level threshold of SQg.,e = 0.7 for data mining tasks
based on a comparison with human-coded quality scores.

We also compute 1 — (mean language uncertainty), a measure proposed by Baumann 2015.
Using a Naive Bayes classifier trained on character n-grams to estimate the language of a given
piece of text, we compute the probability that each given line in a document is either English or
Spanish (Shuyo 2010). To match the orientation of our other scores, we report mean language
certainty, MLCscore = (1/n) Xiines (Pr(English) + Pr(Spanish)), where n is the number of lines in a
document. Therefore, this measure can be interpreted as the mean confidence that a given plain
text document is valid English or Spanish.

Figure 2 depicts the distribution of scores for each data set with respect to the four measures.
While PDFiean Scores lower than the TXT,yig 0N three of four metrics, it does so by only a few per-
centage points on average. Furthermore, the vast majority of documents surpass the 0.7 threshold
for SQscore- The close overlap in score distributions between the original plain text data set and the
text extracted via OCR gives us confidence that the OCR process has produced data suitable for
further research efforts.

The pre and postprocessing steps make very little difference, on average; the majority of OCR
documents score almost identically whether or not they are pre and postprocessed. However,
the positive skews apparent in Figure 3 illustrate that some documents see their scores improve
by over 30 percentage points due to pre and postprocessing. Paired t-tests indicate that pre and
postprocessing result in significant (but not necessarily substantial) mean gains across three of

5. TXTorig primarily comprises texts derived from . html documents.

6. These heuristics were originally designed for cleaning OCR output. We have adapted them for use in quality assessment.

7. We use the Hunspell spell checker: http://hunspell.github.io.

8. These are likely to be conservative measures as many valid tokens will be misclassified as garbage; for example: some
within-document section references, email addresses, web addresses, phone numbers, brand names, and specific legal or
medical terminology.

Radford et al. | Working Paper 4

http://hunspell.github.io

the four measures: ATNCBgcore = +0.002, AKKscore = —0.000, ASQqore = +0.002, and AMLCgcore =
+0.008 with p-values of 0.004,0.996, 1.48 x 107>, and 5.16 x 107", respectively.

Discussion
While we have confidence that these plain text versions of COVID-19 related policies will prove
valuable to researchers, the OCR process described here is not perfect. One notable issue that occurs
frequently is that the connected components removal preprocessing step removes signatures.
When signatures overlap with typed text, obscured portions of the text are also removed. This
results in occasional degradation of the the names, titles, and, less frequently, dates at the ends of
documents. A small number of documents have manual markups that are improperly recognized.
For example, sections of documents that have been manually struck through with pen will not be
properly represented in plain text. Character homoglyphs will also sometimes lead to mistakes in
the OCR process. 5 and S, for example, may be confused for one another. Underlining of text can
cause that portion of text to be identified as a connected component above the set threshold and
therefore removed. This can affect, for example, underlined hyperlinks. Speckles and decoration
that are not completely removed by our preprocessing often result in erroneous output characters;
these occur especially frequently at the beginnings and endings of documents.

Despite the outstanding issues briefly described above, we find that OCR technologies produce
usable plain text data from government documents which are, in terms of quality, on par with
native plain text documents.

References

Alex, B., and J. Burns. 2014. “Estimating and Rating the Quality of Optically Character Recognised Text.” In
Proceedings of the First International Conference on Digital Access to Textual Cultural Heritage, 97-102.
DATeCH "14. Madrid, Spain: Association for Computing Machinery. 1ISBN: 9781450325882. d0i:10.1145/
2595188.2595214. https://doi.org/10.1145/2595188.2595214.

Baumann, R. 2015. “Automatic evaluation of OCR quality.” /etc (blog) (March). https://ryanfb.github.io/etc/
2015/03/16/automatic_evaluation_of_ocr_quality.html.

Kulp, S., and A. Kontostathis. 2007. “On retrieving legal files: Shortening documents and weeding out garbage.”
In TREC, edited by E. M. Voorhees and L. P. Buckland, vol. Special Publication 500-274. National Institute
of Standards / Technology (NIST).

Shuyo, N. 2010. Language Detection Library for Java. http://code.google.com/p/language-detection/.

Smith, R.2007. “An Overview of the Tesseract OCR Engine.” In Proceedings of the Ninth International Conference
on Document Analysis and Recognition - Volume 02, 629-633. ICDAR ’07. USA: IEEE Computer Society.
1SBN: 0769528228.

Taghva, K., T. Nartker, A. Condit, and J. Borsack. 2001. “Automatic Removal of “Garbage Strings” in OCR Text: An
Implementation.” Proceedings of the 5th World Multi-Conference on Systemics, Cybernetics and Informatics.

Vincent, L. 2006. “Announcing Tesseract OCR.” Google Code Blog (August). http://googlecode.blogspot.com/
2006/08/announcing-tesseract-ocr.html.

Wu, K., E. Otoo, and K. Suzuki. 2009. “Optimizing Two-Pass Connected-Component Labeling Algorithms.”
Pattern Anal. Appl. (Berlin, Heidelberg) 12, no. 2 (February): 117-135. 1SSN: 1433-7541. d0i:10.1007/s10044-
008-0109-y. https://doi.org/10.1007/510044-008-0109-y.

Radford et al. | Working Paper 5

http://dx.doi.org/10.1145/2595188.2595214
http://dx.doi.org/10.1145/2595188.2595214
https://doi.org/10.1145/2595188.2595214
https://ryanfb.github.io/etc/2015/03/16/automatic_evaluation_of_ocr_quality.html
https://ryanfb.github.io/etc/2015/03/16/automatic_evaluation_of_ocr_quality.html
http://code.google.com/p/language-detection/
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
http://dx.doi.org/10.1007/s10044-008-0109-y
http://dx.doi.org/10.1007/s10044-008-0109-y
https://doi.org/10.1007/s10044-008-0109-y

	Introduction
	Digitizing Executive Orders
	Preprocessing
	Optical Character Recognition
	Postprocessing

	Evaluation
	Discussion

