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THIS TALK

1. Forecasting Battle Deaths
2. Forecasting Protests in Hong Kong
3. Measuring Battle Deaths
4. Conclusion

Companion Webpage (benradford.com)
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FORECASTING BATTLE DEATHS



HIGH RESOLUTION CONFLICT FORECASTING
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THE QUESTION

Can we predict changes in state-based violence?
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FORECASTING CONFLICT IS SCIENCE

• Forecasting is about making falsifiable predictions.
• If we can forecast conflict, we can (perhaps) mitigate violence.
• Forecasting conflict has a long history in the social sciences:

• War is in the Error Term [Gartzke, 1999]
• Forecasting to avoid overfitting observational models [Ward et al., 2013]
• DARPA’s Integrated Crisis Early Warning System
• …Lots of great research [Muchlinski et al., 2016, Colaresi and Mahmood, 2017]
• PRIO’s Violence Early Warning System (ViEWS)
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VIEWS COMPETITION

Uppsala University and the Peace Research Institute of Oslo (PRIO)
The Violence & Impacts Early-Warning System (VIEWS)

ViEWS Prediction Competition (2020)
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WHAT IS A SHARED TASK?

Shared Task

A collaborative research effort in which teams compete to accomplish a task
given shared data and evaluation metrics.

Components of Shared Tasks

• Objective or “task”
• Data

• Training data ← fit model to this
• Validation data ← use to perform model search or tuning
• Evaluation/Test data ← unobserved until eval time

• Target metrics (e.g., MSE, Accuracy, …)
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SHARED TASKS

• Netflix Prize (2009)
• Build a better film recommendation engine

• Dozens of NLP tasks for LLMs
• The Abstract Reasoning Challenge [Chollet, 2019]
• General Language Understanding Evaluation
[Wang et al., 2018]

• Basically every other possible task:
• Passenger Screening Algorithm Challenge
$1,500,000. Dept. of Homeland Security

• Home Value Prediction
$1,200,000. Zillow

• Deepfake Detection Challenge
$1,000,000. Amazon, Meta, Microsoft
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VIEWS GOAL (COUNTRY-MONTH)

Figure 1: ViEWS Competition illustration (cm) [Hegre et al., 2022]
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VIEWS GOAL (PRIO GRID-MONTH)

Figure 2: ViEWS Competition illustration (pgm) [Hegre et al., 2022]
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PRIO GRID-MONTH

Figure 3: PRIO Grid-Month (pgm)
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VIEWS SHARED TASK

The Target (DV)

Change in Battle Related Deaths / grid-cell month.
UCDP-GED [Sundberg and Melander, 2013]

The Data

• 1990–2013: Training
• 2014–2016: Validation

• 2017–2019: Testing
• 2020–2021: True out-of-sample

Evaluation

Metrics: MSE, TADDA, MAL, pEMDiv
Benchmark model: random forest
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DETAILS

ViEWS Competition

• Make predictions of ∆ln(battle deaths+ 1)t+s
• Resolution: monthly grid cells
• Grid cells: ∼2500.0 km2 (one-half degree lat / lon)
• Time frame: 1990–2020
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WHAT DO THE DATA LOOK LIKE?

Let’s consider what our data “look like” to motivate our modeling choices.
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WHAT DOES THE TARGET LOOK LIKE?

Figure 4: ∆ln(battle deaths+ 1)
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FEATURES

Variable Description
1 ln_ged_best_sb Current ln(deaths+ 1)
2 pgd_bdist3 Border distance (km)
3 pgd_capdist Distance to capital (km)
4 pgd_agri_ih Agricultural area %
5 pgd_pop_gpw_sum Population
6 pgd_ttime_mean Travel time to major city
7 spdist_pgd_diamsec Diamond resources
8 pgd_pasture_ih Pasture area %
9 pgd_savanna_ih Savanna area %
10 pgd_forest_ih Forest area %
11 pgd_urban_ih Urban area %
12 pgd_barren_ih Barren area %
13 pgd_gcp_mer Gross cell product (USD)
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FEATURE MAPS
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FEATURE PER MONTH
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FEATURES OVER TIME
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INPUT AND OUTPUT TENSORS

Input Size (single sample)

(12× 178× 169× 14) = 5, 053, 776

Output Size (single sample)

(7× 178× 169× 1) = 210, 574

Training Set Size

5, 053, 776/12× 270 = 113, 709, 960
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MODEL REQUIREMENTS

Attributes We Want

• Spatial effects
• Temporal effects
• Additional features / covariates

This Looks Like...

Next frame prediction for generating videos [Lotter et al., 2017]

The Model

Convolutional Long Short-Term Memory Neural Network (ConvLSTM)
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NEURAL NETWORKS
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NEURAL NETWORKS

x1

x2

y ̂ 

This is ŷ, our predicted value for y.

It is the output of our neural network.
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NEURAL NETWORKS

x1

x2

y ̂ 

This is a neuron.
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NEURAL NETWORKS

x1
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f (⋅)

y ̂ 

A neuron is a function.
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NEURAL NETWORKS

w1x1

x1 w2x2

x2

f (⋅)

y ̂ 

Our neuron’s input is (w1 × x1) + (w2 × x2).

w1 and w2 are weights, or coefficients.
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NEURAL NETWORKS

x1

x2

f (⋅)
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This is another neuron.
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NEURAL NETWORKS

w3x1x1

w4x2

x2

f (⋅)

y ̂ 

It’s value is a function of (w3 × x1) + (w4 × x2).
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NEURAL NETWORKS

x1
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A layer is a bunch of neurons shared inputs and different weights.
Every arrow above is a unique weight (or coefficient).
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NEURAL NETWORKS
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The inputs to this neuron are the outputs of the previous layer.
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NEURAL NETWORKS
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These are hidden layers.
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NEURAL NETWORKS
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CONVOLUTIONAL
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CONVOLUTIONAL
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CONVOLUTIONAL
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CONVOLUTIONAL
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CONVOLUTIONAL
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CONVOLUTIONAL
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LSTM / RECURRENT NEURAL NETWORK
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MODEL
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MODEL DETAILS

• Parameters: 281,016
• Loss: MSE
• Optimizer: RMSprop
• Batch Size: 8
• Epochs: 75 Training time: about 1.5 hours

29



MAX PREDICTIONS IN TEST SET (+2 MONTHS)

Figure 5: Observed Max Figure 6: Predicted Max 30



MIN PREDICTIONS IN TEST SET (+2 MONTHS)

Figure 7: Observed Min Figure 8: Predicted Min
31



ACTUAL: DECEMBER 2018 (+2 MONTHS)
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PREDICTED: DECEMBER 2018 (+2 MONTHS)
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WHAT’S THE MODEL LEARNING?

What if...

• The model is only learning a reversion to the mode (0) when the current
death count is greater than 0.

• And, when the current death count is 0, it just predicts something like the
mean increase in deaths from the training set?

∆̂s=X =

{
− ln(deaths+ 1)s=0 if ln(deaths+ 1)s=0 > 0
∆̄s̸=X else
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ACTUAL VERSUS PREDICTED (VALIDATION + TEST SET)

Figure 9: Observed v. Predicted Figure 10: Count v. Prediction
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BLACK BOX

Can we open up the “black box” of the neural network?
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WHAT FEATURES MATTER?

Methods to Inspect Model

• Shapley values
• Local Interpretable Model-Agnostic Explanations (LIME)
• Attention Layer [Bahdanau et al., 2016]
• Occlusion Sensitivity [Zeiler and Fergus, 2014]
• Alternative Models
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ATTENTION LAYER & OCCLUSION

Feature Importance
Current ln(deaths+ 1) 0.284

Population 0.271
Urban area 0.207

Travel time to major city 0.051
Agricultural area 0.040

Gross cell product 0.035
Forest area 0.029

Diamond resources 0.017
Barren area 0.016

Border distance 0.014
Savanna area 0.012
Pasture area 0.011

Missingness ind. 0.010
Distance to capital 0.010

38



SOMETHING SIMPLER

Let’s try the same ConvLSTM model with only one feature:

ln(battle deaths+ 1).
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SINGLE FEATURE MODEL

Competition Model Single Feature
ConvLSTM ConvLSTM

Steps MSE TADDA MSE TADDA
s = 2 0.022 0.017 0.022 0.013
s = 3 0.022 0.016 0.022 0.013
s = 4 0.022 0.016 0.022 0.014
s = 5 0.022 0.016 0.022 0.013
s = 6 0.023 0.017 0.022 0.013
s = 7 0.023 0.017 0.022 0.014
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UH OH.

Is this model…bad?
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NO. IN FACT, IT IS AWARD WINNING! (ALMOST)

This ConvLSTM was among the two best models out of eight teams that submitted.
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RADAR PLOTS

[Paola Vesco and Weidmann, 2022] 43



ABOUT THOSE ESCALATIONS...

Figure 11: Views out-of-sample predictions
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THE PROBLEM

Forecasting state-based violence (escalations) is really hard.
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IMPROVING FORECASTS

• Different models.
• Higher-resolution time-varying predictors.

• Evidence from Hong Kong Protests.
• Improved measurement.

• “Estimating Conflict Losses and Reporting Biases”

• Understand the fundamental limits to prediction.
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MODELS IN THE COMPETITION

• Elastic net regression
• Random forest
• Graph convolutional neural networks
• Dynamic time warping
• XGboost
• Hierarchical regression models
• State-space models
• Topic models
• AutoML
• Hidden Markov models
• ConvLSTM
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IMPROVING FORECASTS

• Different models.
• Higher-resolution time-varying predictors.

• Evidence from Hong Kong Protests.
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HONG KONG PROTESTS



HKMAP.LIVE
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HKMAP.LIVE
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HKMAP.LIVE
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HKMAP ICONS

Approx. 195,262 Reports
Police Special Tactics Unit

Protesters Closed

Emergency Unit Car Ambulance

Danger Firetruck

Live Reporter Road Blocked

Safe Water Cannon Used

Live Bullet Warning Water Cannon Warning

Tear Gas Warning

Tear Gas Released
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QUESTION

Old Question

How many battle deaths do we expect to observe in this 2500km2 cell during
one month? y
New Question

What is the probability that at least one of these events is reported within a
4km2 grid cell during a 2 hour period?
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METHOD
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PREDICTORS

Structural Model Limited Model Full Model
Map & Building data Map & Building data Map & Building data

Roads data Roads data Roads data
Weather data Weather data
Day of week Day of week
Time of day Time of day

HKMap.live reported events
Table 1: Three sets of models.
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PREDICTING REPORTED POLICE

https://pandas-lab.com/assets/sds_police_2km_2hr.mp4
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PREDICTING REPORTED POLICE

https://pandas-lab.com/assets/sds_emergency_car_2km_2hr.mp4
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POLICE PRESENCE P-R CURVE
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SWAT TEAM P-R CURVE
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TIME-VARYING PREDICTORS HELP

Forecasting HK Events

High-resolution time-varying predictors (e.g., events) help!

Undercover Police Arrests (with Howard Liu)

• How does the geography of protest shape police tactics?
• We find undercover police are more likely to make arrests on the
periphery of protests than in central areas.

• Currently under review...
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IMPROVING FORECASTS

• Different models.
• Higher-resolution time-varying predictors.

• Evidence from Hong Kong Protests.
• Improved measurement.

• “Estimating Conflict Losses and Reporting Biases”

• Understand the fundamental limits to prediction.
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MEASURING BATTLE DEATHS



UCDP-GED

UCDP-GED

• Uppsala Conflict Data Program Georeferenced Event Dataset
• Sources:

• Global newswires & BBC
• Local and specialized news
• IGO, NGO, government, and research reports
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ESTIMATING CONFLICT LOSSES AND REPORTING BIASES
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THE QUESTION

Old Question

How many battle deaths do we expect to observe in this 2500km2 cell during
one month? y
New Question

• Model-based measurement of battle deaths.
• Can we simultaneously account for source biases?
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LET’S FIND OUT

Reuters (Sept. 21, 2022)
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WHAT DOES THE USG SAY?

U.S. D.O.D. (September 22, 2022)
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WHAT ABOUT UKRAINIAN LOSSES?
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METHOD

• Collected 4,609 reports on battle losses (news and social media):
• Deaths & casualties
• Aircraft
• Drones
• Vehicles
• Anti-aircraft systems

• Bayesian random effects generalized additive model (Stan)
• Source bias random effects
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THE FULL MODEL
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RESULTS
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UKRAINIAN MILITARY FATALITIES
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INTERESTING NUMBERS

• Expected deaths as of day 365
RU 76,687 (38,670 – 139,772)
UA 17,223 (6,219 – 39,105)

• Casualties to deaths ratios on day 365
RU 2.9:1
UA 4.9:1

• Russian to Ukrainian troop loss ratio
5.53:1 (1.61:1 – 14.5:1)
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BIASES
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IMPROVING FORECASTS

• Different models.
• Higher-resolution time-varying predictors.

• Evidence from Hong Kong Protests.
• Improved measurement.

• “Estimating Conflict Losses and Reporting Biases”

• Understand the fundamental limits to prediction.
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CONCLUSION



CONCLUSION

The Message

• Forecasting is important for science!
• Falsify theories.
• Predict effects of interventions.
• Avoid overfitting.

• Forecasting conflict escalation is really hard.

The Good News

• There’s never been a better time to study forecasting & measurement.
• Interesting data are more available than ever.
• Social science is benefiting machine learning and data science best
practices.
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ADDITIONAL PROJECTS

Measurement

• Estimating complex concepts from text data:
• Populism
• Political ideology
• Event attributes

• Measuring sub-national territorial control

Data Science for Cybersecurity

• Using language models to identify vulnerabilities in source code
• Machine learning to detect network intrusions
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THANK YOU

Benjamin Radford
benjamin.radford@charlotte.edu
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ACTUAL VERSUS PREDICTED (TRUE OUT-OF-SAMPLE)

Figure 12: Benchmark Model Figure 13: ConvLSTM

Out-of-sample forecasts.



THE NUMBERS

Table 2: Mean Sq. Error
Steps ConvLSTM Benchmark
s = 2 0.024 0.053
s = 3 0.028 0.059
s = 4 0.025 0.052
s = 5 0.036 0.064
s = 6 0.036 0.063
s = 7 0.035 0.064

Table 3: TADDA
Steps ConvLSTM Benchmark
s = 2 0.018 0.138
s = 3 0.019 0.142
s = 4 0.020 0.142
s = 5 0.024 0.150
s = 6 0.021 0.148
s = 7 0.025 0.153

*Targeted Abs. Distance with Direction Augmentation



MOTIVATION

• Large language models are expensive.
• Companies want to predict their return on performance.
• Researchers have found limits to their ability to predict language [Kaplan et al., 2020].

• Irreducible error
• Bayes error

We can apply this to social sciences:

Holding data size, compute resources, or model parameters constant, estimate
the limit of our ability to make predictions.



HONG KONG
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Figure 14: HKMap.live data over time



POLICE VEHICLES P-R CURVE



TEAR GAS P-R CURVE



DO TIME-VARYING PREDICTORS HELP?

Police Presence
Limited Model Full Model

Accuracy 0.92 0.93
Precision 0.07 0.07

Recall 0.95 0.91
F-score 0.13 0.14

n = 1766 / 289,138
Table 4: Evaluation set performance.



DO TIME-VARYING PREDICTORS HELP?

Water Cannon Use
Limited Model Full Model

Accuracy 0.98 0.97
Precision 0.02 0.01

Recall 0.57 0.71
F-score 0.02 0.02

n = 97 / 289,138
Table 5: Evaluation set performance.



PNAS



SOURCES AREN’T EVEN INTERNALLY CONSISTENT

Forbes (March 22, 2022)



EVEN MORE DATA



PUTTING IT ALL TOGETHER

Can we put all of this messy data together to obtain nice (“unbiased”) estimates of losses?



DATA

We collected 4,357∗ loss reports from Feb. 24, 2022 – Feb. 23, 2023.

• Date
• Loss type (21 types)
• Temporal unit (cumulative or daily)
• Ranges (“between XXX and YYY losses”)
• Reporting sources
• Loss country (Ukraine or Russia)
• Newspaper or venue
• Text of claim

∗ 6,032



THE MODEL DIAGRAM



THE MODEL

• Bayesian random effects model (Stan)
• Outcomes:

• Daily counts ∼ Poisson
• Cumulative counts ∼ Negative binomial

• Predictors:
• Daily latent time series for every type-target pair
• Reporting source-target biases
• Reporting source specific min and max scalar



THE MODEL

ydailyi ∼ Pois(exp(µdailyi ))

ycumj ∼ NB(exp(µcumj ), 1exp(ϕtype-target[j]))

µdayi = θtype-target[i]

+ βsource-target[i]

+ βminsource[i] × 1min(xmini )

+ βmaxsource[i] × 1max(xmaxi )

µcumj = ln(CumSum(exp(θtype-target[j])))

...
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OUR SPECIAL SPECIAL MODEL

• Multivariate outcomes
• Daily outcomes
• Cumulative outcomes

• Actual losses are latent
• Cubic B-splines to interpolate

• Reports are sometimes given as ranges
• Dummy variables for min or max estimates

• Reporting sources are likely biased
• Multilevel bias terms
• Every reporting source gets a bias term
• Every loss type within a source gets its own bias term

• Biases are multipliers, not intercept shifts
• Our model is log-linear in parameters

• Missing values
• Implicit imputation
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THE MODEL

Estimating this model was a nightmare.



RESULTS



POSTERIOR PREDICTIVE INTERVALS



UKRAINIAN MILITARY FATALITIES



TANK LOSSES



LOTS OF TYPES

ISO2 Loss type n Est. 95% CI
russian-gray RU AA Systems 233 339 [76–1070]
ukrainian-gray UA AA Systems 13 1105 [108–5247]
russian-gray RU Artillery 380 1483 [701–2818]
ukrainian-gray UA Artillery 35 2290 [519–6966]
russian-gray RU Helicopters 389 172 [87–311]
ukrainian-gray UA Helicopters 30 64 [14–183]
russian-gray RU Jets 409 146 [68–273]
ukrainian-gray UA Jets 38 122 [32–372]
russian-gray RU Military Deaths 523 76687 [38670–139772]
ukrainian-gray UA Military Deaths 67 17223 [6219–39105]
russian-gray RU MLRS 261 488 [148–1222]
ukrainian-gray UA MLRS 27 538 [155–1482]
russian-gray RU Tanks 501 3380 [1704–6178]
ukrainian-gray UA Tanks 33 2051 [385–5946]
russian-gray RU UAVs 292 337 [153–707]
ukrainian-gray UA UAVs 40 1643 [387–4371]



MODEL VALIDATION

• We don’t know the true latent values, so we can’t evaluate that way.
• ...or do we?

• There is not a straight-forward way to compute R2 with these models.
• We can compute AIC and BIC, but those only help internally.
• Let’s use out-of-sample cross-validation!

• Divide the data into 5 folds.
• Estimate 5 models, leaving out one fold of the data each time.
• Make predictions for y on the held out data.
• Plot the out-of-sample predictions versus the actual values.



MODEL VALIDATION

5-fold Cross Validation



MODEL VALIDATION



THE TOOLS

• R / RStudio
• Data cleaning
• Graphics and tables

• Stan
• Bayesian modeling

• University Research Computing
• LATEX

• Overleaf.com
• Manuscript
• Slides
• Poster

• Git / Github
• Collaboration
• Replication archive

• Harvard Dataverse
• Data distribution



PUBLISHED

Figure 15: Proceedings of the National Academy of Sciences



TIMELINE

February 24, 2022: Started data collection
Fall, 2022: Started modeling

February 23, 2023: Ended data collection∗
May 2, 2023: First submission to PNAS
June 5, 2023: First round of reviews

24 page response letter
July 3, 2023: Second round of reviews

18 page response letter
July 20, 2023: Acceptance



STAN



PUBLICITY



THE MODEL, AGAIN

• The model is just too complicated
• We could have made it simpler... probably.

• It’s not efficient:
• could be the Negative Binomial / Poisson link functions
• could be the exp(...) operator

• Should we assume:
• when data are scarce, losses regress to zero
• when data are scarce, losses regress to their mean



PLEASE HELP!

• Is there interest in this in political science?
• If so, where?
• Any suggestions for framing?

• Is there interest in follow-up on:
• estimating daily “conflict intensity”
• estimating source reporting biases

• Is there anything else we could use our data for?
• Do you think there’s interest in a continuing dataset?



CONCLUSION

Thank you!

And thank you to my co-authors:
Yaoyao Dai
Niklas Stoehr
Aaron Schein
Mya Fernandez
Hanif Sajid

Contact me: bradfor7@uncc.edu
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